A spatiotemporally coordinated cascade of protein kinase C activation controls isoform-selective translocation.
نویسندگان
چکیده
In pituitary GH3B6 cells, signaling involving the protein kinase C (PKC) multigene family can self-organize into a spatiotemporally coordinated cascade of isoform activation. Indeed, thyrotropin-releasing hormone (TRH) receptor activation sequentially activated green fluorescent protein (GFP)-tagged or endogenous PKCbeta1, PKCalpha, PKCepsilon, and PKCdelta, resulting in their accumulation at the entire plasma membrane (PKCbeta and -delta) or selectively at the cell-cell contacts (PKCalpha and -epsilon). The duration of activation ranged from 20 s for PKCalpha to 20 min for PKCepsilon. PKCalpha and -epsilon selective localization was lost in the presence of Gö6976, suggesting that accumulation at cell-cell contacts is dependent on the activity of a conventional PKC. Constitutively active, dominant-negative PKCs and small interfering RNAs showed that PKCalpha localization is controlled by PKCbeta1 activity and is calcium independent, while PKCepsilon localization is dependent on PKCalpha activity. PKCdelta was independent of the cascade linking PKCbeta1, -alpha, and -epsilon. Furthermore, PKCalpha, but not PKCepsilon, is involved in the TRH-induced beta-catenin relocation at cell-cell contacts, suggesting that PKCepsilon is not the unique functional effector of the cascade. Thus, TRH receptor activation results in PKCbeta1 activation, which in turn initiates a calcium-independent but PKCbeta1 activity-dependent sequential translocation of PKCalpha and -epsilon. These results challenge the current understanding of PKC signaling and raise the question of a functional dependence between isoforms.
منابع مشابه
O-13: Na+/K+-ATPase Alpha1 Isoform Mediates Ouabain-Induced Expression of Cyclin D1 and Proliferation of Rat Sertoli Cells
Background: Novel roles for the interaction of cardiotonic steroids to Na+/K+-ATPase have been established in recent years. The aim of the present study was to investigate the intracellular signaling events downstream the action of ouabain on Na+/K+-ATPase in Sertoli cell obtained from immature rats. Treatment of Sertoli cells with ouabain (1 μM) induced a rapid and transient increase in the ex...
متن کاملThe Implication of Androgens in the Presence of Protein Kinase C to Repair Alzheimer’s Disease-Induced Cognitive Dysfunction
Aging, as a major risk factor of memory deficiency, affects neural signaling pathways in hippocampus. In particular, age-dependent androgens deficiency causes cognitive impairments. Several enzymes like protein kinase C (PKC) are involved in memory deficiency. Indeed, PKC regulatory process mediates α-secretase activation to cleave APP in β-amyloid cascade and tau proteins phosphorylation mecha...
متن کاملActivation loop phosphorylation controls protein kinase D-dependent activation of nuclear factor kappaB.
Activation of the inducible transcription factor nuclear factor kappaB (NF-kappaB) occurs in cells exposed to oxidative stress, and the serine/threonine kinase protein kinase D (PKD) is critical for signal relay to NF-kappaB. We have recently delineated two coordinated events that control PKD activation in response to oxidative stress: phosphorylation at Tyr463 by the tyrosine kinase Abl, and p...
متن کاملActivated protein kinase C isoforms target to cardiomyocyte caveolae : stimulation of local protein phosphorylation.
Protein kinase C (PKC) isoforms constitute an important component of the signal transduction pathway used by cardiomyocytes to respond to a variety of extracellular stimuli. Translocation to distinct intracellular sites represents an essential step in the activation of PKC isoforms, presumably as a prerequisite for stable access to substrate. Caveolae are specialized subdomains of the plasma me...
متن کاملSevoflurane Stimulates MAP Kinase Signal transduction through the Activation of PKC α and βII in Fetal Rat Cerebral Cortex Cultured Neuron
Protein kinase C (PKC) is a key enzyme that participates in various neuronal functions. PKC has also been identified as a target molecule for general anesthetic actions. Raf, mitogen-activated protein kinase (MEK) and extracellular signal-regulated kinase (ERK1/2) have been thought to be target effectors of PKC. In the present study, we attempted to evaluate the effect of sevoflurane on PKC/MAP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 26 6 شماره
صفحات -
تاریخ انتشار 2006